non-abelian, supersoluble, monomial
Aliases: C32⋊C9.8S3, C33.5(C3⋊S3), C32.28He3⋊C2, C3.5(C33⋊S3), (C3×3- 1+2).2S3, C32.17(He3⋊C2), C3.2(3- 1+2.S3), SmallGroup(486,47)
Series: Derived ►Chief ►Lower central ►Upper central
C32.28He3 — C3.(C33⋊S3) |
Generators and relations for C3.(C33⋊S3)
G = < a,b,c,d,e,f | a3=c3=d3=f2=1, b3=e3=a, ab=ba, ac=ca, ad=da, ae=ea, faf=a-1, cbc-1=a-1b, bd=db, ebe-1=a-1bc, fbf=a-1b2, cd=dc, ece-1=acd, fcf=acd-1, de=ed, fdf=d-1, fef=a-1e2 >
Subgroups: 682 in 70 conjugacy classes, 13 normal (5 characteristic)
C1, C2, C3, C3, S3, C6, C9, C32, C32, D9, C3×S3, C3⋊S3, C3×C9, 3- 1+2, C33, C9⋊C6, C9⋊S3, C3×C3⋊S3, C32⋊C9, C3×3- 1+2, C32⋊D9, C33.S3, C32.28He3, C3.(C33⋊S3)
Quotients: C1, C2, S3, C3⋊S3, He3⋊C2, C33⋊S3, 3- 1+2.S3, C3.(C33⋊S3)
Character table of C3.(C33⋊S3)
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 6A | 6B | 9A | 9B | 9C | 9D | 9E | 9F | 9G | 9H | 9I | 9J | 9K | 9L | |
size | 1 | 81 | 2 | 2 | 2 | 2 | 9 | 9 | 81 | 81 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ4 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | orthogonal lifted from S3 |
ρ5 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ7 | 3 | 1 | 3 | 3 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | ζ3 | ζ32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ8 | 3 | -1 | 3 | 3 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ9 | 3 | 1 | 3 | 3 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | ζ32 | ζ3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ10 | 3 | -1 | 3 | 3 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ11 | 6 | 0 | -3 | -3 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C33⋊S3 |
ρ12 | 6 | 0 | -3 | -3 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C33⋊S3 |
ρ13 | 6 | 0 | -3 | -3 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C33⋊S3 |
ρ14 | 6 | 0 | 6 | -3 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3 | 3 | 0 | 0 | 0 | 0 | orthogonal lifted from C33⋊S3 |
ρ15 | 6 | 0 | 6 | -3 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3 | 3 | 0 | 0 | 0 | orthogonal lifted from C33⋊S3 |
ρ16 | 6 | 0 | 6 | -3 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | -3 | 0 | 0 | 0 | orthogonal lifted from C33⋊S3 |
ρ17 | 6 | 0 | -3 | 6 | -3 | -3 | 0 | 0 | 0 | 0 | 2ζ98-ζ94+ζ92+ζ9 | ζ95+2ζ94-ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 3- 1+2.S3 |
ρ18 | 6 | 0 | -3 | -3 | -3 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | orthogonal lifted from 3- 1+2.S3 |
ρ19 | 6 | 0 | -3 | 6 | -3 | -3 | 0 | 0 | 0 | 0 | ζ95+2ζ94-ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 2ζ98-ζ94+ζ92+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 3- 1+2.S3 |
ρ20 | 6 | 0 | -3 | -3 | -3 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | orthogonal lifted from 3- 1+2.S3 |
ρ21 | 6 | 0 | -3 | 6 | -3 | -3 | 0 | 0 | 0 | 0 | -ζ98+2ζ97+ζ94+ζ92 | 2ζ98-ζ94+ζ92+ζ9 | ζ95+2ζ94-ζ92+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 3- 1+2.S3 |
ρ22 | 6 | 0 | -3 | -3 | -3 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | orthogonal lifted from 3- 1+2.S3 |
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)(37 40 43)(38 41 44)(39 42 45)(46 49 52)(47 50 53)(48 51 54)(55 58 61)(56 59 62)(57 60 63)(64 67 70)(65 68 71)(66 69 72)(73 76 79)(74 77 80)(75 78 81)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)
(1 16 43)(2 11 41)(3 15 39)(4 10 37)(5 14 44)(6 18 42)(7 13 40)(8 17 38)(9 12 45)(20 23 26)(21 27 24)(28 50 73)(29 54 80)(30 49 78)(31 53 76)(32 48 74)(33 52 81)(34 47 79)(35 51 77)(36 46 75)(55 61 58)(57 60 63)(64 70 67)(66 69 72)
(1 37 13)(2 38 14)(3 39 15)(4 40 16)(5 41 17)(6 42 18)(7 43 10)(8 44 11)(9 45 12)(19 68 62)(20 69 63)(21 70 55)(22 71 56)(23 72 57)(24 64 58)(25 65 59)(26 66 60)(27 67 61)(28 50 73)(29 51 74)(30 52 75)(31 53 76)(32 54 77)(33 46 78)(34 47 79)(35 48 80)(36 49 81)
(1 70 34 4 64 28 7 67 31)(2 62 48 5 56 51 8 59 54)(3 23 75 6 26 78 9 20 81)(10 27 76 13 21 79 16 24 73)(11 65 32 14 68 35 17 71 29)(12 63 49 15 57 52 18 60 46)(19 80 41 22 74 44 25 77 38)(30 42 66 33 45 69 36 39 72)(37 55 47 40 58 50 43 61 53)
(2 9)(3 8)(4 7)(5 6)(10 40)(11 39)(12 38)(13 37)(14 45)(15 44)(16 43)(17 42)(18 41)(19 46)(20 54)(21 53)(22 52)(23 51)(24 50)(25 49)(26 48)(27 47)(28 64)(29 72)(30 71)(31 70)(32 69)(33 68)(34 67)(35 66)(36 65)(55 76)(56 75)(57 74)(58 73)(59 81)(60 80)(61 79)(62 78)(63 77)
G:=sub<Sym(81)| (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72)(73,76,79)(74,77,80)(75,78,81), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (1,16,43)(2,11,41)(3,15,39)(4,10,37)(5,14,44)(6,18,42)(7,13,40)(8,17,38)(9,12,45)(20,23,26)(21,27,24)(28,50,73)(29,54,80)(30,49,78)(31,53,76)(32,48,74)(33,52,81)(34,47,79)(35,51,77)(36,46,75)(55,61,58)(57,60,63)(64,70,67)(66,69,72), (1,37,13)(2,38,14)(3,39,15)(4,40,16)(5,41,17)(6,42,18)(7,43,10)(8,44,11)(9,45,12)(19,68,62)(20,69,63)(21,70,55)(22,71,56)(23,72,57)(24,64,58)(25,65,59)(26,66,60)(27,67,61)(28,50,73)(29,51,74)(30,52,75)(31,53,76)(32,54,77)(33,46,78)(34,47,79)(35,48,80)(36,49,81), (1,70,34,4,64,28,7,67,31)(2,62,48,5,56,51,8,59,54)(3,23,75,6,26,78,9,20,81)(10,27,76,13,21,79,16,24,73)(11,65,32,14,68,35,17,71,29)(12,63,49,15,57,52,18,60,46)(19,80,41,22,74,44,25,77,38)(30,42,66,33,45,69,36,39,72)(37,55,47,40,58,50,43,61,53), (2,9)(3,8)(4,7)(5,6)(10,40)(11,39)(12,38)(13,37)(14,45)(15,44)(16,43)(17,42)(18,41)(19,46)(20,54)(21,53)(22,52)(23,51)(24,50)(25,49)(26,48)(27,47)(28,64)(29,72)(30,71)(31,70)(32,69)(33,68)(34,67)(35,66)(36,65)(55,76)(56,75)(57,74)(58,73)(59,81)(60,80)(61,79)(62,78)(63,77)>;
G:=Group( (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72)(73,76,79)(74,77,80)(75,78,81), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (1,16,43)(2,11,41)(3,15,39)(4,10,37)(5,14,44)(6,18,42)(7,13,40)(8,17,38)(9,12,45)(20,23,26)(21,27,24)(28,50,73)(29,54,80)(30,49,78)(31,53,76)(32,48,74)(33,52,81)(34,47,79)(35,51,77)(36,46,75)(55,61,58)(57,60,63)(64,70,67)(66,69,72), (1,37,13)(2,38,14)(3,39,15)(4,40,16)(5,41,17)(6,42,18)(7,43,10)(8,44,11)(9,45,12)(19,68,62)(20,69,63)(21,70,55)(22,71,56)(23,72,57)(24,64,58)(25,65,59)(26,66,60)(27,67,61)(28,50,73)(29,51,74)(30,52,75)(31,53,76)(32,54,77)(33,46,78)(34,47,79)(35,48,80)(36,49,81), (1,70,34,4,64,28,7,67,31)(2,62,48,5,56,51,8,59,54)(3,23,75,6,26,78,9,20,81)(10,27,76,13,21,79,16,24,73)(11,65,32,14,68,35,17,71,29)(12,63,49,15,57,52,18,60,46)(19,80,41,22,74,44,25,77,38)(30,42,66,33,45,69,36,39,72)(37,55,47,40,58,50,43,61,53), (2,9)(3,8)(4,7)(5,6)(10,40)(11,39)(12,38)(13,37)(14,45)(15,44)(16,43)(17,42)(18,41)(19,46)(20,54)(21,53)(22,52)(23,51)(24,50)(25,49)(26,48)(27,47)(28,64)(29,72)(30,71)(31,70)(32,69)(33,68)(34,67)(35,66)(36,65)(55,76)(56,75)(57,74)(58,73)(59,81)(60,80)(61,79)(62,78)(63,77) );
G=PermutationGroup([[(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36),(37,40,43),(38,41,44),(39,42,45),(46,49,52),(47,50,53),(48,51,54),(55,58,61),(56,59,62),(57,60,63),(64,67,70),(65,68,71),(66,69,72),(73,76,79),(74,77,80),(75,78,81)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81)], [(1,16,43),(2,11,41),(3,15,39),(4,10,37),(5,14,44),(6,18,42),(7,13,40),(8,17,38),(9,12,45),(20,23,26),(21,27,24),(28,50,73),(29,54,80),(30,49,78),(31,53,76),(32,48,74),(33,52,81),(34,47,79),(35,51,77),(36,46,75),(55,61,58),(57,60,63),(64,70,67),(66,69,72)], [(1,37,13),(2,38,14),(3,39,15),(4,40,16),(5,41,17),(6,42,18),(7,43,10),(8,44,11),(9,45,12),(19,68,62),(20,69,63),(21,70,55),(22,71,56),(23,72,57),(24,64,58),(25,65,59),(26,66,60),(27,67,61),(28,50,73),(29,51,74),(30,52,75),(31,53,76),(32,54,77),(33,46,78),(34,47,79),(35,48,80),(36,49,81)], [(1,70,34,4,64,28,7,67,31),(2,62,48,5,56,51,8,59,54),(3,23,75,6,26,78,9,20,81),(10,27,76,13,21,79,16,24,73),(11,65,32,14,68,35,17,71,29),(12,63,49,15,57,52,18,60,46),(19,80,41,22,74,44,25,77,38),(30,42,66,33,45,69,36,39,72),(37,55,47,40,58,50,43,61,53)], [(2,9),(3,8),(4,7),(5,6),(10,40),(11,39),(12,38),(13,37),(14,45),(15,44),(16,43),(17,42),(18,41),(19,46),(20,54),(21,53),(22,52),(23,51),(24,50),(25,49),(26,48),(27,47),(28,64),(29,72),(30,71),(31,70),(32,69),(33,68),(34,67),(35,66),(36,65),(55,76),(56,75),(57,74),(58,73),(59,81),(60,80),(61,79),(62,78),(63,77)]])
Matrix representation of C3.(C33⋊S3) ►in GL12(𝔽19)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 14 | 17 | 18 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 17 | 7 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 2 | 5 | 0 | 0 | 18 | 18 |
0 | 0 | 0 | 0 | 0 | 0 | 5 | 12 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 10 | 18 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 12 | 0 | 0 | 18 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 10 | 18 | 17 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 17 | 17 | 5 | 18 | 18 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 5 | 17 | 5 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 9 | 16 | 5 | 17 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 9 | 15 | 5 | 17 | 0 | 0 |
0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
17 | 7 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
17 | 7 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 12 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 5 | 0 | 0 | 18 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 10 | 18 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 12 | 0 | 0 | 18 | 18 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
18 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 12 | 18 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
17 | 14 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
14 | 7 | 0 | 0 | 18 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 14 | 17 | 18 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 17 | 7 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 2 | 5 | 0 | 0 | 18 | 18 |
0 | 0 | 0 | 0 | 0 | 0 | 5 | 12 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 18 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 12 | 0 | 0 | 17 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
15 | 8 | 0 | 0 | 7 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 8 | 0 | 0 | 7 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 13 | 1 | 0 | 12 | 14 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 13 | 0 | 1 | 12 | 14 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 12 | 0 | 0 | 18 | 17 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 18 |
0 | 0 | 0 | 0 | 0 | 0 | 9 | 14 | 0 | 0 | 17 | 5 |
0 | 0 | 0 | 0 | 0 | 0 | 9 | 13 | 0 | 0 | 17 | 5 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 18 | 18 | 5 | 17 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 10 | 1 | 0 | 5 | 17 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
17 | 14 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
14 | 7 | 0 | 0 | 18 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 12 | 18 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 18 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 |
G:=sub<GL(12,GF(19))| [1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,14,17,2,5,0,0,0,0,0,0,18,18,17,7,5,12,0,0,0,0,0,0,0,0,18,1,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,0,0,0,18,1,0,0,0,0,0,0,0,0,0,0,18,0],[1,0,16,0,16,0,0,0,0,0,0,0,0,1,10,0,12,0,0,0,0,0,0,0,0,0,18,1,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,0,0,0,18,1,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,0,0,0,16,0,1,4,9,9,0,0,0,0,0,0,10,0,17,5,16,15,0,0,0,0,0,0,18,1,17,17,5,5,0,0,0,0,0,0,17,18,5,5,17,17,0,0,0,0,0,0,0,0,18,1,0,0,0,0,0,0,0,0,0,0,18,0,0,0],[0,1,17,17,5,2,0,0,0,0,0,0,18,18,7,7,12,5,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,16,16,0,0,0,0,0,0,0,0,1,0,10,12,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,0,0,0,0,18,1,0,0,0,0,0,0,0,0,0,0,18,0],[18,18,5,2,17,14,0,0,0,0,0,0,1,0,2,12,14,7,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,0,0,0,0,0,1,14,17,2,5,0,0,0,0,0,0,18,18,17,7,5,12,0,0,0,0,0,0,0,0,18,1,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,0,0,0,18,1,0,0,0,0,0,0,0,0,0,0,18,0],[0,16,15,16,8,8,0,0,0,0,0,0,0,12,8,8,13,13,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,18,17,7,7,12,12,0,0,0,0,0,0,1,18,2,2,14,14,0,0,0,0,0,0,0,0,0,0,0,0,16,0,9,9,1,4,0,0,0,0,0,0,12,0,14,13,1,10,0,0,0,0,0,0,0,0,0,0,18,1,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,18,1,17,17,5,5,0,0,0,0,0,0,17,18,5,5,17,17],[0,1,17,14,5,2,0,0,0,0,0,0,1,0,14,7,2,12,0,0,0,0,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,18,0,0,0] >;
C3.(C33⋊S3) in GAP, Magma, Sage, TeX
C_3.(C_3^3\rtimes S_3)
% in TeX
G:=Group("C3.(C3^3:S3)");
// GroupNames label
G:=SmallGroup(486,47);
// by ID
G=gap.SmallGroup(486,47);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,697,655,7022,224,824,6915,2817,735,3244,11669]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=c^3=d^3=f^2=1,b^3=e^3=a,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,f*a*f=a^-1,c*b*c^-1=a^-1*b,b*d=d*b,e*b*e^-1=a^-1*b*c,f*b*f=a^-1*b^2,c*d=d*c,e*c*e^-1=a*c*d,f*c*f=a*c*d^-1,d*e=e*d,f*d*f=d^-1,f*e*f=a^-1*e^2>;
// generators/relations
Export